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Abstract—In recent years there has been renewed interest in modeling transport phenomena associated
with the dendritic solidification of binary mixtures. Solidification occurs in a two-phase (nushy) region
characterized by complex, solid-liquid interfacial geometries, and development of a model which is
amenable to solution dictates the use of continuum (mixture theory) assumptions and/or volume-averaging
procedures. A review of the recent literature would suggest that solidification models developed from
mixture theory assumptions are less valid and less general than similar models based on volume-averaging,
particularly with regard to the respective momentum equations which describe interdendritic fluid flow. In
this paper, these different approaches are shown to yield identical macroscopic conservation equations,
and the continuum momentum equation is reconsidered in an effort to reconcile matters which have lead
to confusion about the validity of the continuum model. Consistency between recently presented momentum
equations is demonstrated.

1. INTRODUCTION

THE SOLIDIFICATION of industrial alloys is a complex
process which occurs over a temperature range and
exhibits a two-phase region called the mushy zone.
The mushy zone is comprised of solid dendrites
and interdendritic liquid, and it separates the fully
solidified and melted regions. Dendrites grow natur-
ally with a very large specific surface area and with
dendrite arm spacings of the order of 10 um. In the
macroscopic sense, such growth makes the liquid—
solid interface highly irregular and virtually irre-
solvable. The nucleation and growth of crystals, micro-
segregation, the formation of inclusions such as
pores, and internal cracking are important micro-
scopic phenomena associated with solidification with-
in the mushy zone, and these events are known to
be strongly influenced by macroscopic momentum,
heat, and mass transfer. Moreover, convection in the
mushy zone is known to be responsible for macro-
segregation {1, 2], which refers to the redistribution
of alloy components on a macroscopic scale.

The inherent geometrical complexity of the solid-
liquid interface in the mushy zone precludes a precise,
microscopic description of the interdendritic fluid flow
with macroscopic parameters. Nevertheless, numer-
ous models which treat the effects of macroscopic
transport phenomena during the solidification of
alloys have been developed by incorporating empirical

relationships between superficial fluid velocity (a
macroscopic parameter) and permeability. The first
such models [3-8] treated conditions only within the
mushy zone and ignored the coupling which exists
between flows in the bulk melt and mushy regions.
Szekely and Jassal [9] and Ridder er al. [10] sub-
sequently treated dendritic solidification with models
which included coupling between the mushy and all-
liquid zones. Separate conservation equations were
written for the melt and mushy zones, and since the
solutions to these equations could only be achieved
numerically, each region was discretized with a
separate grid. The solution procedure to these
multidomain models therefore involved complicated
schemes for remeshing each domain and matching
boundary conditions at the moving liquidus interface.
While providing significant improvement over pre-
vious models, the multidomain models required
explicit tracking of the liquidus interface which, by
practical considerations, restricted their use to prob-
lems with regular interface shapes.

In 1987, a set of equations for momentum, energy,
and species transport in binary, solid-liquid, phase
change systems was presented {11], which con-
currently applied in all regions (solid, mush, and
liquid) and required only a single, fixed numerical grid
and a single set of boundary conditions to effect a
solution. Hence, the solid, mushy, and liquid regions
were implicitly coupled, and limitations of the multi-
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NOMENCLATURE
B body force g density
/ mass fraction p§  partial density
g volume fraction ¢ vector component of material stress
G momentum source due to phase interactions tensor
i x-direction unit vector & average normal stress (mechanical
J  general diffusion flux pressure)
K permeability ¢ general scalar quantity
n  unit normal vector Q  angular velocity.
P pressure-like parameter in momentum
equation .
d Subscripts
S general source term .
¢ time k arbitrary phase &
u  x-direction velocity component i lslq]‘.léd ;;lhase
V  velocity vector " ?3 phase ‘
x  x-direction. v wcomponent.
Greek symbols Superscript
u viscosity o arbitrary constituent «.

domain models were avoided. In their formulation,
the mushy zone was viewed as a solid-liquid mixture
with macroscopic properties, and individual phase
conservation equations were summed to form a set of
mixture conservation equations. Limiting assump-
tions were invoked (a non-deforming solid phase,
T, = T, and no macroscopic species diffusion through
the solid phase) to reduce the number of dependent
variables, and the solidus and liquidus interfaces,
as well as individual phase variables, were implicitly
determined by solving the mixture equations. Appli-
cations of the so-called continuum model have con-
firmed impeortant features of binary solidification that
had previously been observed or surmised to exist but
had eluded prediction [12-14]. Such features include
an irregular liquidus interface shape, double-diffusive
convection in the melt, the channeling of inter-
dendritic flows, and characteristic macrosegregation
patterns.

Other single-domain models of binary solidification
have been presented in recent years. Voller and Pra-
kash [15] presented a method of modeling dendritic
solidification with a fixed grid, but their analysis
ignored species transport. An enthalpy based energy
equation and a momentum equation based on the
superficial liquid velocity (g,V)) were formulated to
apply in all zones. Appropriate source terms were
incorporated to account for latent heat evolution and
solid-liquid interaction forces within the mushy zone.
Variations and extensions of the continuum model
[11] have been made by Voller er al. {16}, who included
non-equilibrium freezing effects and a deforming solid
phase, and by Kececioglu and Rubinsky [17], whe
were concerned with the propagation of a discrete
phase change interface through a porous material.
Although a similar approach was adopted by Becker-

mann and Viskanta [18, 19], these authors chose to
cite volume-averaging literature [20-22], rather than
mixture theory literature [23-28], as justification for
the conservation equations associated with individual
phases. For predictions based on a stationary solid
phase, results obtained from the volume-averaged
model [18, 19] are consistent with those obtained from
the continuum model [12, 14]. Very recently, Ni and
Beckermann {291 proposed a model for which the
volume-averaged, individual phase equations would
have to be solved separately with the aid of interphase
transport models. The model would permit relaxation
of the assumptions pertaining to a non-deforming
solid phase, thermal equilibrium (7, = T}), and neg-
ligible species diffusion through the solid phase, at the
expense of solving twice as many partial differential
equations. However, attempts to solve such a full set
of equations have yet to be made.

Recent literature suggests some misunderstanding
concerning the formulation and application of single-
domain solidification models, especially with regard
to the momentum equations. In a paper by Ganesan
and Poirier [30], it was stated that, although several
different momentum equations for treating inter-
dendritic flow can be found in the literature, little
fundamental justification had been provided for the
models. Development of the continuum momentum
equation [11] was said to rely too heavily on intuitive
arguments related to phase interaction forces, while
the volume-averaged momentum equation of Becker-
mann and Viskanta [18, 19] was noted for omitting
development details. Moreover, recent reviews of den-
dritic solidification models {31-33] have suggested the
existence of significant differences between models
based on continuum theory [11] and local volume-
averaging {18, 15}
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The objective of this paper is to identify and clarify
misunderstandings surrounding the development and
application of continuum and volume-averaging
models of dendritic solidification and to demonstrate
that the two models yield essentially equivalent
results. As the original derivation of the con-
tinuum momentum equation [11] has apparently con-
tributed to the current state of confusion, a revised
formulation of this equation is presented. While fol-
lowing the same basic approach of the original
development {11}, the revised formulation identifies
and reconciles potentially confusing elements of the
development. In addition, key features of the con-
tinuum and volume-averaging approaches are con-
trasted in an effort to clarify the essential elements
of single-domain (or fixed-grid) solidification models,
and inherent similarities of momentum equations
based on the two methods are discussed.

2. THE CONTINUUM MOMENTUM
EQUATION

In developing the continuum momentum equation,
special attention will be given to points of contention
concerning the original formulation {11]. The devel-
opment parallels that of the original study, and the
end result will be shown to be virtually equivalent.
For convenience, only the x-component of momen-
tum (in a Cartesian coordinate system) will be con-
sidered.

The continuum theory of mixtures can be applied
to obtain the following general conservation equation
[11}:

=PI+ GV =~V (9d)+a:Se ()
where g, is the local volume fraction of phase k, g,
the partial density of phase &k (i.e. g,p,), V. the mass~
averaged velocity of phase &, J, the diffusion flux (per
unit area of phase k) through phase &, S, the total
source/sink of a conserved quantity associated with
phase k, and ¢, is an arbitrary, dependent scalar
variable. The diffusive flux, J,, represents that which
is not accommodated by the macroscopic advection
term, g, V.¢,. An individual phase momentum equa-
tion is found by substituting the expressions ¢, = u,,
Ji = —o,, and S, = p,B,.+G,. into equation (1).
It follows that

d - _ ;
& G +V - (g V) = V- (g0, ) + pr B + 9,04

@

where 6, is the vector component of the mean phase
stress tensor which contributes to the x-direction
momentum, B, is the mean body force acting on
phase & in the x-direction, and G, represents all forces
and rates of momentum exchange between phase k
and all other phases per unit volume of phase k. In
this formulation o, represents the macroscopic state
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of stress within phase k. Stresses occurring at the
microscopic interfaces between phases give rise to
phase interaction forces and are macroscopically con-
sidered in G, along with direct momentum exchange
through phase change.

Summing the individual phase momentum equa-
tions and imposing Newton’s third law (£ g,G,, = 0),
a mixture momentum equation may be expressed as

;; (z P—kuk> +V (Z 5kvkuk>
=V (; gkakx) + (; ﬁkka>- (3)

In the original derivation of the mixture momentum
equation [11], the restriction associated with New-
ton’s third law was not introduced, and instead a net
phase interaction force was postulated to exist. This
intuitive argument is removed from the current for-
mulation, and the role of phase interaction forces is
described below. Equation (3) simply states that the
storage and advection of the momentum of a mixture
of phases within a differential control volume must
equal the net force acting on the volume. This force
includes unbalanced internal stresses (e.g. viscous
stresses and pressure) and externally imposed body
forces (e.g. gravity). The momentum equation can be
further refined by introducing definitions for mixture
density, velocity, and body force

DN @
&
pV = Zﬁkvk and pu= Zﬁk“k (5)
I k
pr = zﬁkka (6)
%

and by substituting these definitions into equation (3).
After rearranging the advection term, it follows that

0
£ (P +V (pVa) = YV (g100)
k

-V [g PV —V) (4 — u)]‘H?Bx- Y

Equation (7) applies, in general, to multiphase sys-
tems which could, for example, include a large number
of dispersed solid particles in a continuous liquid or
a three-phase mixture of liquid, solid, and voids.
However, if the equation is applied to a two-phase
mixture of continuous solid and liquid, the identities
gs+g=1,p, = fipand V, = (V-V))/fi+V,allow the
second term on the right-hand side of equation (7) to
be rewritten as

v [kz 1 (Vi — V) (s~ “)]

=V- [pf% V-V (u—us)]- ®
!
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This term is non-zero only within the mushy zone,
and it is a measure of the difference between the total
net advection of momentum (from both phases indi-
vidually) and the advection represented by mixture
parameters on the left-hand side of equation (7). This
term will subsequently be shown to be negligible.

If, in addition, fluid behavior is assumed to be New-
tonian, the following constitutive relation for the
intrinsic mean phase stress vector [11, 30] holds:

! 2
e = — i V(gu) — == 1,V (g, V)i
3 g,\“ (gx) 3gklk (g Vi)
1 ¢ _.
+ézﬂk§;(§kvd—(fkl %

where 6, is the mean mechanical pressure of phase £.
Substituting this relation into the liquid stress term, it
follows after some manipulation, that

V(g0,) =V" (MEVu)-ulBussz;
P~ P

w2V vi— 2 (gP) (10
~ 2 Vg fs*'é}“(,%) {10a)

&
where
L mVe(aV)
P =g 3 q‘—— (10b)

In developing equation (10), it is assumed that viscous
stresses arising from local density variations are neg-
ligible and that viscosity is locally invariant (Vi =~ 0).
Also, the solid phase is considered to be rigid, such
that V2u, = 0. Collectively, the first three terms on the
right-hand side of equation (10a) represent viscous
straining of the liquid. The straining rate has delib-
erately been expressed in terms of mixture kinematics
and the kinematic motion of the solid phase. The
second term on the right-hand side of equation (10a)
is written in terms of solid translation, and the third
term is written in terms of solid rotation, where
Vu, = — 0, xi. Since the solid fraction gradient is zero
in single-phase regions, the second and third terms on
the right-hand side of equation (10a) vanish outside
the mushy zone. In the all-liquid region, the first and
last terms on the right-hand side of equation (10a)
simply represent conventional viscous and pressure
force variations. In the all-solid region, all terms on
the right-hand side of equation (10a) vanish, since the
liquid stress is not defined in this region.
Consideration must now be given to the stress in
the solid phase, since this phase may transmit forces.
However, since the solid phase is assumed to be non-
deformable, equation (9) is of little use. An acceptable
expression for the solid stress term may instead be
obtained by rearranging equation (2), yielding

¢ . - -
v (.q\(fsx) = ﬁt (psus) +V : (vasu") s pst”gsGsv-

an
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The last term on the right-hand side of equation (11)
represents normal (pressure) and shear (viscous)
forces imparted on the solid by the liquid, as well as
direct momenium exchange through phase change.
Phase change effects are assumed to be negligible,
and the phase interactions on the solid are equal and
opposite to those on the liquid. Therefore

0
V- (gsa&\‘) = ‘P—i (p-sus) +V- (ﬁsvﬁuJ

| o

- ﬁsst +glGS,v =" (ﬁsus) +V * (psvsus)

’l

~
—

_ Jg) : .
_psBsr+P Ay +glG|\”‘1} (12)
ox

where P(0g,/0x) represents the net normal force inter-
action and g,Gy, , represents drag force on the liquid
due to relative phase motion. The drag term (.G, p)
accounts for shear forces acting on the liquid phase
at the solid-liquid interface.

By substituting equations (8), (10) and (12) into
equation (7), the momentum equation becomes

0 P P oo
—(puy+ V- {pVu =V'( Vu)— - uVf,
3t pr) {pVu) ﬂspz ‘“{); sV

f (V=V) {u— ug)]

1Y . .
— 2~ Vu, Vf,—V-
l«hpx o V. [P},‘

P . I
+glplle_gl—a;+glGlnD+ E (psus)

+ V(5. V.u,). (13)

In equation (13) only the liquid body force term
(90.B,,) has survived, and the pressure interaction
term has cancelled part of the liquid pressure gradient
to yield g(6P/0x). Both conditions result from the
manner in which the solid stress term was expressed
in equation (12). The drag interaction term in equa-
tion {13) must be replaced with an expression amen-
able to computation. Ganesan and Poirier [30] pro-
vide a good discussion of appropriate models for the
drag interaction term, including Darcy’s law. Darcy’s
law is deemed appropriate only under the restrictive
conditions of slow, steady fluid motion through a
porous medium of uniform liquid volume fraction in
which the macroscopic advection and viscous terms
(liquid-liquid interactions) are negligible. Darcy’s law
can be expressed as

P ]
By —pB =~ E? Gl —u)

(4
where the permeability, K, may be isotropic or ortho-
tropic. A version of Darcy’s law with a more general
anisotropic permeability can also be written, but it is
not essential to the current discussion. While not being
strictly appropriate [30], Darcy’s law can be applied
to determine the drag interaction term in equation

(13
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(15)

where it has been assumed that the only significant
terms in equation (13) are those associated with drag
interaction, pressure gradient, and liquid body force.
Since permeabilities of dendritic structures are typi-
cally of the order of 10" m? (or smaller) [34], the
drag interaction term does indeed dominate over the
advection and viscous terms within the mushy zone.
While more detailed procedures have been proposed
for modeling the solid-liquid drag interaction term
[30], there is insufficient data to support the use of
such schemes. Therefore, Darcy’s law is used in the
current formulation with the understanding that
higher-order models can be substituted as justification
arises.

As mentioned earlier, the second, third and fourth
terms on the right-hand side of equation (13) are non-
zero only in the two-phase region, where they are
negligible in comparison to the drag interaction term.
Hence, these terms are ignored, and the continuum
momnentum equation reduces to

N u
Gip=— EX gl —uy)

oW+ (pVu) = V- (ul ”Vu)
it /

P o D
—.91?\' p; (u—uy) +glp1Bl,\~_gla + E(Psus) (16)

where g,(u,—u,) = p/p(u—u;) and the solid accel-
eration is expressed as a substantial derivative.
Another objective of the continuum formula-
tion was to develop equations which are amenable
to solution with existing numerical algorithms. The
SIMPLER algorithm {35], for example, couples
momentum component and continuity equations
implicitly through the pressure gradient term, which
is scaled by g, in equation (16). To avoid changing
existing algorithms to account for the scaling of the
pressure gradient by g, equation (14), which is essen-
tially valid whenever g, is non-zero, can be multiplied
by g,, rearranged to yield an identity with zero, and
added to the right-hand side of equation (16) to yieldt

0 . _v.[, P
5 (00 +V (Vi) =V <#,p] w)

_H

P yipB— L DGy 07
K‘ pl(“ Uy +pl x ™ ax+Dt(psu5' ( )

Equations (16) and (17) are considered to be equi-
valent, but equation (17) is easier to implement into
existing solution algorithms.

Although solid velocity components appear in
equation (17), the dependent variable is the mixture
velocity, which is well defined in all regions. In an all-
liquid region, the Darcy term vanishes with K, = oo,
as does the solid acceleration term with g, = 0. Thus,

1 Equation (14) and the last step which yielded equation
(17) are valid only under the assumption of a non-deforming
dendritic structure.
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in an all-liquid region, equation (17) reduces to the
familiar, single-phase relation. The solid velocity must
be determined for the mushy and all-solid regions,
requiring another equation for the solid motion. How-
ever, the need to solve another equation is eliminated
by considering conditions in which the solid motion
can be prescribed [11], and since the solid is assumed
to be continuous and rigid, its motion is described
entirely by prescribing its translation and rotation
at a single point. This assumption could be relaxed
without changing the general methodology of the con-
tinuum model, but the complexity of the model would
be greatly enhanced. The Darcy term in equation (17)
ensures that ¥ = u, in an all-solid region, provided that
the permeability model yields K, =0 when g, = 1.
Hence, equation (17) can be appropriately applied in
all regions of a solidification system. As previously
discussed [10, 12, 30, 34, 36], the Darcy damping term
depends strongly on the permeability model.

The current formulation of the continuum momen-
tum equation differs from the original development
[11] in two important ways. First, Newton’s third law
is explicitly asserted in equation (3). In the original
development [11], the general mixture momentum
equation included a non-zero, phase interaction term.
Secondly, instead of assuming that the solid is free of
internal stress [11], equation (11) is exploited, which
introduces solid-liquid interactions into the mixture
momentum equation. Equation (17) is slightly differ-
ent than the original form of the continuum momen-
tum equation [11]. First, the last term on the right-
hand side of equation (17) is not found in the original
mixture momentum equation. The solid acceleration
term accounts for a portion of the solid stress
variation. It is negligible or zero for most solidification
conditions, but has been retained because it may be
important in situations for which the solid is oscil-
lating. Secondly, the body force term in equation (17)
(0B, depends only on the liquid phase, whereas the
body force term of the original continuum momentum
equation included contributions from both phases
[11]. However, previous applications of the con-
tinuum momentum equation [12, 14] have been con-
sistent with equation (17), with the Boussinesq
approximation having been invoked to account for
the effects of temperature and solute concentration on
the density of the liquid phase. Finally, the definitions
of the pressure-like parameter P differ between the
current and original formulations. In equation (10b),
P is defined in terms of liquid parameters only,
whereas the original definition for P was a volume
fraction-weighted average of parameters associated
with both phases.

3. COMPARISON OF CONTINUUM AND
VOLUME-AVERAGED MODELING
APPROACHES

Two different approaches have been adopted to
yield single-domain, solid-liquid phase change
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models. Both approaches begin by considering a
macroscopic domain which contains an arbitrary
number of phases. In the continuum approach [11,
17], general conservation principles are applied to a
macroscopically small control volume, and an integral
conservation equation is obtained for an arbitrary,
individual phase, with the integrands written in terms
of macroscopic parameters of the physical system.
The integral equations can be transformed into
differential equations when the macroscopic pa-
rameters are assumed to be continuously differ-
entiable functions of space and time. Source terms are
included in the individual phase conservation equa-
tions to account for interactions with other phases.
The fact that microscopic interfaces exist between the
different phases necessitates the inclusion of phase
interaction terms.

In the volume-averaging approach [18, 30, 37] con-
ventional continuum relationships are assumed to be
valid within a given phase at the microscopic level. By
integrating the microscopic relations over an appro-
priately sized control volume (i.e. one which is small
in the macroscopic view but large in the microscopic
view), the scale of the problem is changed [37], and
macroscopic parameters are defined in terms of micro-
scopic parameters. Conservation equations are writ-
ten in terms of the new macroscopic quantities, and
phase interactions are described with microscopic sur-
face integrals, evaluated over the acknowledged inter-
facial surfaces.

The general conservation equation which provides
a starting point for both the continuum and volume-
average models [11, 18] is equation (1). However,
because it deals more systematically with the rela-
tionship between microscopic and macroscopic
parameters, the volume-average approach may be
preferable. In this approach, phase interaction terms
are a natural consequence of the development and are
expressed as surface integrals over microscopic solid—
liquid interfaces [29]). The approach may therefore
be better suited to understanding how microscopic
cvents influence macroscopic behavior and to the
development of micro—macroscopic models {38-40].
However, it is important to recognize that, aithough
a phase interaction term can be represented as an
integral over the interfacial area contained within a
small averaging volume, final evaluation in terms of
the microscopic variables used in its description is
impossible, since these variables cannot be resolved in
a macroscopic model. Indeed, the availability of such
resolving power would render volume-averaging
unnecessary. In terms of implementation for macro-
scopic calculations, it is therefore believed that the
continuum and volume-averaged approaches are
equally suited.

In describing real systems, it is seldom possible to
incorporate all physical mechanisms into a mathe-
matical model of a process, and it is the modeler’s task
to select those mechanisms which exert a dominant
influence on system behavior. With respect to sol-

P. J. PRESCOTT ¢! al.

idification of a binary mixture, the dominant physical
mechanisms governing fluid flow in the mushy zone
are different than those in the all-liquid region.
This condition is evident in existing multidomain
solidification models [9, 10}, which use different
momentum equations in the mushy and all-liquid
regions. Single-domain phase-change models [11, 15,
19] have exploited the fact that the governing equa-
tions used in the mushy and all-liquid zones are
derived, either explicitly or implicitly, from the same
fundamental laws of physics, and by ignoring terms
which are negligible only in both regions, a single set
of equations is found to apply in both regions. Criteria
for neglecting/retaining terms can also be applied to
the all-solid region, so that a single-domain (solid,
mush, and liquid) model is obtained.

Equations (16) and (17) are consistent with other
mushy zone momentum equations found in the litera-
ture {15, 19, 30]. With i, = 0, equation (17) is identical
to the momentum equation used by Voller and Pra-
kash [15]. Using volume-averaging procedures, Gane-
san and Poirier [30] developed a general momentum
equation in vector form, where the solid was con-
sidered to be stationary. If the fourth term on the
right-hand side of equation (13) is not neglected, but
V., is set equal to zero, equation (16) can be rearranged
and expressed as

= (gwa) +V - (g Vi) =V (1 Vgus)

-~

P

'“91%‘Y f))’] g+ gi0Bi.— g A (18)
This result is essentially equivalent to the x-com-
ponent of equation (43) in ref. [30]. Equation (18}
and the x-component of equation (43) of ref. [30]
differ only in that a higher-order expression for the
solid—liquid drag term is used in ref. {30]. The higher-
order model for the solid-liquid drag term is appro-
priate in anisotropic media (columnar dendritic struc-
tures) {30}, and it may be incorporated into the con-
tinuum model as data for its coefficients become
available. The relationship between equation (18) and
the momentum equation used by Beckermann and
Viskanta [19] is discussed by Ganesan and Poirier
[30].

4. SUMMARY

The derivation of the continuum momentum equa-
tion has been reconsidered in an effort to clarify mis-
conceptions which have arisen since the original devel-
opment [11]. Key assumptions have been highlighted.
as have physical implications and limitations to appli-
cation of the final result. The most important and
distinguishing feature of both the continuum [11, 15,
16] and volume-averaging [19, 30] models is the reten-
tion of all terms which may be dominant in some
region (solid, mush, or liquid) in the conservation
equations. In this respect, the continuum and volume-
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averaged solidification models are essentially equi-
valent.

Although equation (17) is limited to situations cor-
responding to a single, continuous liquid phase and a
single, continuous and non-deforming solid phase {a
system of primary dendrites and eutectic lamalae
would, for example, be considered as one solid phase),
the modeling concept is not restricted as such. Equa-
tion (7) is a more general relation which could
be applied to more complicated systems involving,
for example, solid precipitating at multiple bound-
aries with different velocities, void inclusions, and
solidification around a matrix of fibers (composite
materials). Generally, the continuum approach views
a discontinuous solid structure (e.g. free floating crys-
tals) as several different phases. However, under con-
ditions for which floating and settling of solid crystals
(indeterminate in number) are significant, it becomes
advantageous to view the crystals collectively as a
single, deformable solid phase. Under such con-
ditions, equation (17) cannot be applied, since it
relies on a single, rigid solid phase. Nevertheless, a
mixture momentum equation could be developed for
situations involving a deforming solid phase by intro-
ducing an appropriate (empirically determined)
constitutive relation for the solid phase stress into
equation (7). Such an approach would require an
additional single-phase (solid or liquid) momentum
equation for closure. An alternative is to consider
separate phase momentum equations, thereby elim-
inating the need for a mixture equation [29].

Although application of the continuum model to
binary mixtures has been extremely successful in pre-
dicting important solidification characteristics such
as remelting, liquidus interface irregularities, double-
diffusive convection in the melt, channeling, and
macrosegregation [12-14], quantitative agreement
between predicted and measured results has been less
satisfactory [14]. Barriers to obtaining good quan-
titative agreement include uncertainties in requisite
thermophysical property data and the permeability
associated with the mushy zone. In general, the per-
meability is a tensor, but with a paucity of per-
meability data, detailed models are not available.
Even in equiaxed regions of the mushy zone, where
an isotropic model is appropriate, the permeability is
not well known. Also, permeability data are most
deficient in the important range corresponding to
0.70 < g, < 1.0, where relatively large permeabilities
permit significant interdendritic fluid velocities. The
permeability depends on several factors related to
microscopic morphology, making it difficult to quan-
tify. Moreover, microscopic morphological features,
such as dendrite arm spacing, can change significantly
during the solidification process [41].

An additional uncertainty relates to supplemental
closure rules required to implement the continuum
model. The momentum equation is coupled to the
energy and species conservation equations through
the buoyancy term, which is related to the temperature
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and liquid composition, and less directly through the
permeability, which is a strong function of the local
liquid volume fraction. If local thermodynamic equi-
librium (equal phase temperatures and chemical
potentials) is assumed, temperature, liquid compo-
sition, and liquid volume fraction can be related to the
mixture enthalpy (dependent variable of the energy
equation) and mixture composition (dependent vari-
able of the species equation) through the equilib-
rium phase diagram. Simple thermodynamic relations
thereby provide means of relating temperature, en-
thalpy, concentrations, and phase fractions. How-
ever, binary metal systems which exhibit limited solid
solubility typically exhibit non-equilibrium, since den-
drites are not chemically saturated due to the
extremely slow nature of solid state diffusion {41].
The equilibrium freezing assumption may therefore
provide inaccurate predictions of local solute seg-
regation between liquid and solid phases and of phase
volume fractions. Nevertheless, the equilibrium freez-
ing approximation is a logical starting point in mode-
ling binary solidification, and its use in no way affects
the validity of the conservation equations. It is, in
fact, a simple matter to incorporate non-equilibrium
relationships into the continuum model [16, 40},
although such a treatment is not well suited for the
remelting of dendrites.
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MODELISATION DES SYSTEMES A SOLIDIFICATION DENDRITIQUE: REVISION DE
L’EQUATION DE QUANTITE DE MOUVEMENT DU CONTINUUM

Résumé-—1I1 y a eu ces derniéres années un regain d’intérét dans la modélisation des phénoménes de
transport associés 4 la solidification dendritiques des mélanges binaires. La solidification se fait dans une
région biphasique (boue) caractérisée par des géométries complexes interfaciales solide-liquide, et le
développement d’un modéle qui conduit 4 la solution dicte 'usage d’hypothéses de continuum (théorie de
mélange) et/ou des procédures de moyenne en volume. Une analyse des articles récents suggere que les
modéles de solidification développés a partir des hypothéses de la théorie de mélange sont moins valides
et moins généraux que les modéles similaires basés sur les moyennes en volume, particuliérement en
considération des équations respectives de la quantité de mouvement qui décrivent I’écoulement fluide
interdentrique. Dans cet article, ces différentes approches sont montrées conduire a des équations identiques
de conservation macroscopique, et 'équation de quantité de mouvement du continuum est reconsidérée
pour lever une confusion concernant la validité du modéle de continuum. On montre la cohérence entre
des équations de quantité de mouvement présentées récemment.
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DIE MODELLIERUNG DENTRITISCH ERSTARRENDER SYSTEME:
NEUFORMULIERUNG DER IMPULSERHALTUNGSGLEICHUNG IM
KONTINUUM

Zusammenfassung-—In den letzten Jahren entstand ein erneutes Interesse an der Modellierung von Trans-
portvorgdngen, die mit der dentritischen Erstarrung in bindren Gemischen zusammenhingen. Die Erstar-
rung tritt in einem Zweiphasengebiet mit Fest—Fliissig-Phasengrenzen von komplizierter Geometrie auf.
Die Entwicklung eines geeigneten Modells erfordert die Annahme eines Kontinuums (Mischungstheorie)
und/oder Verfahren der Volumenmittelung. Eine Ubersicht iiber die einschldgige Literatur vermittelt den
Eindruck, daf Erstarrungsmodelle auf der Grundlage der Mischungstheorie weniger richtig und weniger
umfassend seien als solche, die von einer Volumenmittelung ausgehen. Dies gilt insbesondere im Hinblick
auf die Impulstransportgleichungen, welche die Fluidstrdmung zwischen den Dentriten beschreiben. In der
vorliegenden Arbeit wird gezeigt, daB die unterschiedlichen Ansitze zu identischen makroskopischen
Erhaltungsgleichungen fithren. Die Impulstransportgleichung fir das Kontinuum wird neu formuliert, um
die Diskussionen Gber die Giiltigkeit des Kontinuumsmodells auszurdumen. Die Ubereinstimmung mit
einer jingst publizierten Impulstransportgleichung wird dargelegt.

MOJEJIHPOBAHHUE CUCTEM JEHAPHUTHOI'O 3ATBEPAEBAHUSA: MOJAUOUKALIUA
YPABHEHWA KOJIMUECTBA JIBUXEHUSA B MPHUBJIWXEHUHN CIUIOMIHON CPEIBI

Amioranma—B nocnennne roab BO30OHOBIICH MHTEPEC K MOACIMPOBAHNIO SBNCHAN NEPEHOCA, CBH3AH-
HbiX ¢ JEHAPUTHBIM 3aTBEp/eBaHucM OHHapHBIX cMecell. 3aTBepaeBaHme mpoucXouT B AByxdasnoH
06N1acTH, KOTOpas XapakKTepU3YeTCs 3COXHON FeOMEeTPHEN TPaHHUbl Pasfena TBEPUOe TeNO-KHUAKOCTh.
PaspaboTka cooTsercTsyromell Monenn Tpebyer gonyweHnd of HCIONBIOBAHMM NONOXEHHH TeopHH
CIUIOWIHON Cpejibl (TEOpHs CMecel) /HITH NPUMECHEHNS METONOB YcpenHenus no obnemy. O630p cospe-
MeHHOM JIMTEPaTyphl NO3BONACT NPEANONOKATE, YTO MOJEIN 3aTBEPAEBANMS, Pa3paBOTAHHbIE C Y4ETOM
DOnyleHud TEOpHH CMECEH, ABNAIOTCH MEHEE AJEKBATHLIMH, 4€M NPOCTBIE MOAENH, OCHOBAHHBIC HA
YCpeAHEHHH 110 06BeMy, 0COOEHHO B OTHOILEHHH COOTBETCTBYIOUIMX YPABHEHH KOTHYECTBA NBHKEHHH,
ONHUCLIBAIOLIMX TCYCHUE MEXICHAPHTHOH XHIKOCTH. Y pPAaBHEHHE KOJIMYECTBA ABHXKEHHS B NIPUOGIHKEHHH
TEOPHH CMecel Tpeobpa3yeTca ¢ HENIbIO YCTPAHEHHsS NPUYHH HeaaekBaTHOCTH. JIeMOHCTpUpYeTCa COOT-
BETCTBHE MEXIY Pa3IHYHBIMM YPABHEHUAMMH KOJIUYECTBA ABHKEHMS.
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