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Abstract-In recent years there has been renewed interest in modeling transport phenomena associated 
with the dendritic solidification of binary mixtures. Solidi~cation occurs in a two-phase (mu&~) region 
characterized by complex, solid-liquid interfacial geometries, and development of a model which is 
amenable to solution dictates the use ofcontinuum (mixture theory) assumptions and/or volume-averaging 
procedures. A review of the recent literature would suggest that solidification models developed from 
mixture theory assumptions are less valid and less general than similar models based on volume-averaging, 
particularly with regard to the respective momentum equations which describe interdendritic fluid flow. In 
this paper, these different approaches are shown to yield identical macroscopic conservation equations, 
and the continuum momentum equation is reconsidered in an effort to reconcile matters which have lead 
to confusion about the validity of the continuum model. Consistency between recently presented momentum 

equations is demonstrated. 

THE SOLIDIFICATION of industrial alloys is a complex 
process which occurs over a temperature range and 
exhibits a two-phase region called the mushy zone. 
The mushy zone is comprised of solid dendrites 
and interdendritic liquid, and it separates the fully 
solidified and melted regions. Dendrites grow natur- 
ally with a very large specific surface area and with 
dendrite arm spacings of the order of 10 pm. In the 
macroscopic sense, such growth makes the liquid- 
solid interface highly irregular and virtually irre- 
solvable. The nucleation and growth of crystals, micro- 
segregation, the formation of inclusions such as 
pores, and internal cracking are important micro- 
scopic phenomena associated with solidification with- 
in the mushy zone, and these events are known to 
be strongly influenced by macroscopic momentum, 
heat, and mass transfer. Moreover, convection in the 
mushy zone is known to be responsible for macro- 
segregation [I, 21, which refers to the redistribution 
of alloy components on a macroscopic scale. 

The inherent geometrical complexity of the solid- 
liquid interface in the mushy zone precludes a precise, 
microscopic description of the interdendritic fluid flow 
with macroscopic parameters. Nevertheless, numer- 
ous models which treat the effects of macroscopic 
transport phenomena during the solidification of 
alloys have been developed by incorporating empirical 

relationships between superficial fluid velocity (a 
macroscopic parameter) and permeability. The first 
such models [3-81 treated conditions only within the 
mushy zone and ignored the coupling which exists 
between flows in the bulk melt and mushy regions. 
Szekely and Jassal [9] and Ridder ef ul. [IO] sub- 
sequently treated dendritic solidification with models 
which included coupling between the mushy and all- 
liquid zones. Separate conservation equations were 
written for the melt and mushy zones, and since the 
solutions to these equations could only be achieved 
numerically, each region was discretized with a 
separate grid. The solution procedure to these 
multidomain models therefore involved complicated 
schemes for remeshing each domain and matching 
boundary conditions at the moving liquidus interface. 
While providing signi~cant improvement over pre- 
vious models, the multidomain models required 
explicit tracking of the liquidus interface which, by 
practical considerations, restricted their use to prob- 
lems with regular interface shapes. 

In 1987, a set of equations for momentum, energy, 
and species transport in binary, solid-liquid, phase 
change systems was presented 1111, which con- 
currently applied in all regions (solid. mush, and 
liquid) and required only a single, fixed numerical grid 
and a single set of boundary conditions to effect a 
solution. Hence, the solid, mushy, and liquid regions 
were implicitly coupled, and limitations of the multi- 
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body force 
mass fraction 
volume fraction 
momentum source due to phase inte~ctions 
.u-direction unit vector 
general diffusion flux 
permeability 
unit normal vector 
pressure-like parameter in momentum 
equation 
general source term 
time 
x-direction velocity component 
velocity vector 
.\--direction. 

Greek symbols 

!I viscosity 

density 
partial density 
vector component of material stress 
tensor 
average normal stress (mechanical 
pressure) 
general scalar quantity 
angular velocity. 

Subscripts 
k arbitrary phase k 

1 liquid phase 
s solid phase 
s s-component. 

Superscript 
s1 arbitrary constituent Y. 

domain models were avoided. In their formulation, 
the mushy zone was viewed as a solid-.liquid mixture 
with macroscopic properties, and individual phase 
conservation equations were summed to form a set of 
mixture conservation equations. Limiting assump- 
tions were invoked (a non-deforming solid phase, 
T, = T]. and no macroscopic species diffusion through 
the solid phase) to reduce the num~r of dependent 
variables, and the solidus and liquidus interfaces, 
as well as individual phase variables, were implicitly 
determined by solving the mixture equations. Appli- 
cations of the so-called ~~n~~nuu~ model have con- 
firmed important features of binary solidification that 
had previously been observed or surmised to exist but 
had eluded prediction [I 2--141. Such features include 
an irregular liquidus interface shape, double-diffusive 
convection in the melt, the channeling of inter- 
dendritic flows, and characteristic macrosegregation 
patterns. 

Other single-domain models of binary solidification 
have been presented in recent years. Voller and Pra- 
kash [15] presented a method of modeling dendritic 
solidification with a fixed grid, but their analysis 
ignored species transport. An cnthalpy based energy 
equation and a momentum equation based on the 
superficial liquid velocity (g,V,) were formulated to 
apply in all zones. Appropriate source terms were 
incorporated to account for latent heat evolution and 
solid-liquid interaction forces within the mushy zone. 
Variations and extensions of the continuum model 
[I I] have been made by Voller et al: [ 161, who included 
l?on-equjlibrium freezing effects and a deforming solid 
phase, and by Kececioglu and Rubinsky [17], who 
were concerned with the propagation of a discrete 
phase change interface through a porous material, 
Aithoug~ a similar approach was adopted by Recker- 

mann and Viskanta [IS, 191. these authors chose to 
cite volume-averaging literature [20-223, rather than 
mixture theory literature 123-283, as justi~~~tion for 
the conservation equations associated with individual 
phases. For predictions based on a stationary solid 
phase, results obtained from the volume-~lveraged 
model [lS, 191 arc consistent with those obtained from 
the conti~~uum model [12, 143. Very recently, Ni and 
Beckermann [29] proposed a model for which the 
volume-averaged, individual phase equations would 
have to be solved separately with the aid of interphase 
transport models. The mode1 would permit relaxation 
of the assumptions pertaining to a non-deforming 
solid phase, thermal equilibriun~ (r, = T,), and neg- 
ligible species diffusion through the solid phase, at the 
expense of solving twice as many partial differential 
equations. However, attempts to solve such a full set 
of equations have yet to be made. 

Recent literature suggests some misunderstanding 
concerning the formulation and apptication of single- 
domain solidification models, especially with regard 
to the momentum equations. In a paper by Ganesan 
and Poirier [30], it was stated that, although several 
different momentum equations for treating inter- 
dendritic fow can be found in the literature, little 
fundamental justification had been provided for the 
models. Development of the continuum momentum 
equation [1 I] was said to rely too heavily on intuitive 
arguments related to phase interaction forces, while 
the volume-averaged momentum equation of Becker- 
mann and Viskanta [18, 191 was noted for omitting 
de~~elopment details. Moreover. recent reviews of den- 
dritic solidification models 13 J-331 have suggested the 
existence of significant differences between models 
based on continuum theory I11 f and local volume- 
averaging [lg. 19f. 
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The objective of this paper is to identify and clarify 
misunderstandings surrounding the development and 
application of continuum and volume-averaging 
models of dendritic solidification and to demonstrate 
that the two models yield essentially equivalent 
results. As the original derivation of the con- 
tinuum momentum equation [ 1 I] has apparently con- 
tributed to the current state of confusion, a revised 
formulation of this equation is presented. While fol- 
lowing the same basic approach of the original 
development ]I 11, the revised formulation identifies 
and reconciles potentially confusing elements of the 
development. In addition, key features of the con- 
tinuum and volume-averaging approaches are con- 
trasted in an effort to clarify the essential elements 
of single-domain (or fixed-grid) solidification models, 
and inherent similarities of momentum equations 
based on the two methods are discussed. 

2. THE CONTINUUM MOMENTUM 

EQUATION 

In developing the continuum momentum equation, 
special attention will be given to points of contention 
concerning the original formulation [I 11. The devel- 
opment parallels that of the original study, and the 
end result will be shown to be virtually equivalent. 
For convenience, only the x-component of momen- 
tum (in a Cartesian coordinate system) will be con- 
sidered. 

The continuum theory of mixtures can be applied 
to obtain the following general conservation equation 
[II]: 

where gk is the local volume fraction of phase k, & 
the partial density of phase k (i.e. gkpk), Vk the mass- 
averaged velocity of phase k, Jk the diffusion flux (per 
unit area of phase k) through phase k, S, the total 
source/sink of a conserved quantity associated with 
phase k, and Cp* is an arbitrary, dependent scalar 
variable. The diffusive flux, Jk, represents that which 
is not accommodated by the macroscopic advection 
term, PkVk&. An individual phase momentum equa- 
tion is found by substituting the expressions & = ukr 
Jk = -a,_, and S, = pkBkx+&~,~ into equation (1). 
It follows that 

(2) 

where a,, is the vector component of the mean phase 
stress tensor which ~ont~butes to the x-direction 
momentum, & is the mean body force acting on 
phase k in the x-direction, and &, represents all forces 
and rates of momentum exchange between phase k 
and all other phases per unit volume of phase k. In 
this formulation akX represents the macroscopic state 

of stress within phase k. Stresses occurring at the 
microscopic interfaces between phases give rise to 
phase interaction forces and are macroscopically con- 
sidered in ekx, along with direct momentum exchange 
through phase change. 

Summing the individual phase momentum equa- 
tions and imposing Newton’s third law (C gkckl = 0), 
a mixture momentum equation may be expressed as 

In the original derivation of the mixture momentum 
equation [ll], the restriction associated with New- 
ton’s third law was not introduced, and instead a net 
phase interaction force was postulated to exist. This 
intuitive argument is removed from the current for- 
mulation, and the role of phase interaction forces is 
described below. Equation (3) simply states that the 
storage and advection of the momentum of a mixture 
of phases within a differential control volume must 
equal the net force acting on the volume. This force 
includes unbalunced internal stresses (e.g. viscous 
stresses and pressure) and externally imposed body 
forces (e.g. gravity). The momentum equation can be 
further refined by introducing definitions for mixture 
density, velocity, and body force 

P=&% (4) 
i, 

and by substituting these definitions into equation (3). 
After rearranging the advection term, it follows that 

-V. ;&(V&-V) (uk-U) +pB,. 1 (7) 

Equation (7) applies, in general, to multiphase sys- 
tems which could, for example, include a large number 
of dispersed solid particles in a continuous liquid or 
a three-phase mixture of liquid, solid, and voids. 
However, if the equation is applied to a two-phase 
mixture of continuous solid and liquid, the identities 
g,+g, = l,& =f,pandV, = (V-V,)/f;+V,allowthe 
second term on the right-hand side of equation (7) to 
be rewritten as 



2354 P. J. PRESCOTT et al 

This term is non-zero on& within the mushy zone, 
and it is a measure of the difference between the total 
net advection of momentum (from both phases indi- 
vidually) and the advection represented by mixture 
parameters on the left-hand side of equation (7). This 
term will subsequently be shown to be negligible. 

If, in addition, fluid behavior is assumed to be New- 

tonian, the following constitutive relation for the 
intrinsic mean phase stress vector [ 1 I, 301 holds : 

CT - !- ji,C( gnu,) - -‘- pcnV * ( gnVh)i h.A - Sri. 3.9, 

where 5,: is the mean mechanical pressure of phase k. 

Substituting this relation into the liquid stress term, it 

follows after some manipulation, that 

where 

In developing equation (JO), it is assumed that viscous 
stresses arising from local density variations are neg- 
ligible and that viscosity is locally invariant (VP, z 0). 
Also, the solid phase is considered to be rigid, such 

that V’u, = 0. Collectively, the first three terms on the 
right-hand side of equation (lOa) represent viscous 
straining of the liquid. The straining rate has delib- 
erately been expressed in terms of mixture kinematics 

and the kinematic motion of the solid phase. The 
second term on the right-hand side of equation (lOa) 
is written in terms of solid translation, and the third 

term is written in terms of solid rotation, where 
Vu, = -R, x i. Since the solid fraction gradient is zero 
in single-phase regions, the second and third terms on 
the right-hand side of equation (lOa) vanish outside 
the mushy zone. In the all-liquid region, the first and 
last terms on the right-hand side of equation (10a) 
simply represent conventional viscous and pressure 
force variations. In the all-solid region, all terms on 
the right-hand side of equation (1 Oa) vanish, since the 
liquid stress is not defined in this region. 

Consideration must now be given to the stress in 
the sotid phase, since this phase may transmit forces. 
However, since the solid phase is assumed to be non- 
deformable, equation (9) is of little use. An acceptable 
expression for the solid stress term may instead be 
obtained by rearranging equation (2), yielding 

v* (w,,) = ,“I, b%u,) +v * (/XV&,) -m.-g,c,. 
(11) 

The last term on the right-hand side of equation (1 I) 
represents normal (pressure) and shear (viscous) 
forces imparted on the solid by the liquid, as well as 
direct momentum exchange through phase change. 
Phase change effects are assumed to be negligible. 
and the phase interactions on the solid are equal and 
opposite to those on the liquid. Therefore 

where P(&,/dx) represents the net normal force inter- 
action and g&,,,, represents drag force on the liquid 

due to relative phase motion. The drag term (,y,C$,,n) 
accounts for shear forces acting on the liquid phase 

at the solid-liquid interface. 
By substituting equations (S), (10) and (12) into 

equation (7) the momentum equation becomes 

+ v ~(~,V,U,). (13) 

In equation (13) only the liquid body force term 
(g&3,,) has survived, and the pressure interaction 
term has cancelled part of the liquid pressure gradient 
to yield g,(~~~~,~). Both conditions result from the 
manner in which the solid stress term was expressed 
in equation (12). The drag interaction term in equa- 
tion (13) must be replaced with an expression amen- 
able to computation, Ganesan and Poirier [30] pro- 
vide a good discussion of appropriate models for the 
drag interaction term, including Darcy’s law. Darcy’s 
law is deemed appropriate only under the restrictive 
conditions of slow, steady fluid motion through a 
porous medium of uniform liquid volume fraction in 
which the macroscopic advection and viscous terms 
(liquid-liquid interactions) are negligible. Darcy’s law 
can be expressed as 

dP 

3.X -PI& = - $ g&4--4) (14) 
I 

where the permeability, KX, may be isotropic or ortho- 
tropic. A version of Darcy’s law with a more general 
anisotropic permeability can also be written, but it is 
not essential to the current discussion. While not being 
strictly appropriate [30], Darcy’s law can be applied 
to determine the drag interaction term in equation 

(13) 
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where it has been assumed that the only significant 
terms in equation (13) are those associated with drag 
interaction, pressure gradient, and liquid body force. 
Since permeabilities of dendritic structures are typi- 
cally of the order of lo-” m* (or smaller) [34], the 
drag interaction term does indeed dominate over the 

advection and viscous terms within the mushy zone. 
While more detailed procedures have been proposed 
for modeling the solid-liquid drag interaction term 
[30], there is insufficient data to support the use of 
such schemes. Therefore, Darcy’s law is used in the 
current formulation with the understanding that 
higher-order models can be substituted as justification 
arises. 

As mentioned earlier, the second, third and fourth 
terms on the right-hand side of equation (I 3) are non- 

zero only in the two-phase region, where they are 
negligible in comparison to the drag interaction term. 
Hence, these terms are ignored, and the continuum 
momentum equation reduces to 

where g,(u, - u,) = p/p,(u-UJ and the solid accel- 
eration is expressed as a substantial derivative. 

Another objective of the continuum formula- 
tion was to develop equations which are amenable 
to solution with existing numerical algorithms. The 
SIMPLER algorithm [35], for example, couples 
momentum component and continuity equations 
implicitly through the pressure gradient term, which 
is scaled by g, in equation (16). To avoid changing 
existing algorithms to account for the scaling of the 
pressure gradient by g,, equation (14) which is essen- 
tially valid whenever gF is non-zero, can be multiplied 

by g,, rearranged to yield an identity with zero, and 
added to the right-hand side of equation (16) to yield? 

Equations (16) and (17) are considered to be equi- 
valent, but equation (17) is easier to implement into 
existing solution algorithms. 

Although solid velocity components appear in 

equation (17) the dependent variable is the mixture 
velocity, which is well defined in all regions. In an all- 
liquid region, the Darcy term vanishes with K, = co, 
as does the solid acceleration term with Ds = 0. Thus, 

t Equation (14) and the last step which yielded equation 
(17) are valid only under the assumption of a non-deforming 
dendritic structure. 

in an all-liquid region, equation (17) reduces to the 
familiar, single-phase relation. The solid velocity must 
be determined for the mushy and all-solid regions, 

requiring another equation for the solid motion. How- 
ever, the need to solve another equation is eliminated 
by considering conditions in which the solid motion 
can be prescribed [l 11, and since the solid is assumed 
to be continuous and rigid, its motion is described 
entirely by prescribing its translation and rotation 

at a single point. This assumption could be relaxed 
without changing the general methodology of the con- 
tinuum model, but the complexity of the model would 

be greatly enhanced. The Darcy term in equation (17) 
ensures that u = u, in an all-solid region, provided that 

the permeability model yields K, = 0 when gY = 1. 
Hence, equation (17) can be appropriately applied in 
all regions of a solidification system. As previously 

discussed [IO, 12, 30, 34,361, the Darcy damping term 
depends strongly on the permeability model. 

The current formulation of the continuum momen- 
tum equation differs from the original development 
[l l] in two important ways. First, Newton’s third law 

is explicitly asserted in equation (3). In the original 
development [ll], the general mixture momentum 
equation included a non-zero, phase interaction term. 
Secondly, instead of assuming that the solid is free of 
internal stress [l 11, equation (1 I) is exploited, which 
introduces solid-liquid interactions into the mixture 
momentum equation. Equation (17) is slightly differ- 
ent than the original form of the continuum momen- 
tum equation [l 11. First, the last term on the right- 
hand side of equation (17) is not found in the original 
mixture momentum equation. The solid acceleration 
term accounts for a portion of the solid stress 
variation. It is negligible or zero for most solidification 
conditions, but has been retained because it may be 
important in situations for which the solid is oscil- 
lating. Secondly, the body force term in equation (17) 
(p&J depends only on the liquid phase, whereas the 
body force term of the original continuum momentum 
equation included contributions from both phases 
[l 11. However, previous applications of the con- 
tinuum momentum equation [12, 141 have been con- 
sistent with equation (17), with the Boussinesq 
approximation having been invoked to account for 

the effects of temperature and solute concentration on 
the density of the liquid phase. Finally, the definitions 
of the pressure-like parameter P differ between the 
current and original formulations. In equation (lob), 
P is defined in terms of liquid parameters only, 
whereas the original definition for P was a volume 
fraction-weighted average of parameters associated 
with both phases. 

3. COMPARISON OF CONTINUUM AND 

VOLUME-AVERAGED MODELING 

APPROACHES 

Two different approaches have been adopted to 
yield single-domain, solid-liquid phase change 
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models. Both approaches begin by considering a 
macroscopic domain which contains an arbitrary 
number of phases. In the continuum approach [I 1, 
171, genera1 conservation principles are applied to a 
macros~opically small control volume, and an integral 
conservation equation is obtained for an arbitrary, 
individual phase, with the integrands written in terms 

of macroscopic parameters of the physical system. 
The integral equations can be transformed into 
differential equations when the macroscopic pa- 

rameters are assumed to be continuously differ- 
entiable functions of space and time. Source terms are 
included in the individual phase conservation equa- 
tions to account for interactions with other phases, 

The fact that microscopic interfaces exist between the 
different phases necessitates the inclusion of phase 
interaction terms. 

In the volume-averaging approach (I 8, 30, 371 con- 
ventional continuum relationships are assumed to be 
valid within a given phase at the microscopic level. By 

integrating the microscopic relations over an appro- 
priately sized control volume (i.e. one which is small 
in the macroscopic view but large in the microscopic 
view), the scale of the problem is changed 1371, and 
macroscopic parameters are defined in terms of micro- 
scopic parameters. Conservation equations are writ- 
ten in terms of the new macroscopic quantities, and 
phase interactions are described with microscopic sur- 
face integrals, evaluated over the acknowledged inter- 

facial surfaces. 
The general conservation equation which provides 

a starting point for both the continuum and volume- 

average models [I 1, IX] is equation (1). However, 
because it deals more systematically with the rela- 
tionship between microscopic and macroscopic 
parameters, the volume-avenge approach may be 
preferable. in this approach, phase interaction terms 
are a natural consequence of the development and are 

expressed as surface integrals over microscopic solid- 
liquid interfaces [29]. The approach may therefore 
be better suited to understanding how microscopic 

events influence macroscopic behavior and to the 
development of micro-macroscopic models [3840]. 
However. it is important to recognize that, although 

a phase interaction term can be represented as an 
integral over the interfacial area contained within a 
stnall averaging volume. final evaluation in terms of 
the microscopic variables used in its description is 
impossible. since these variables cannot be resolved in 
a macroscopic model. Indeed, the availability of such 
resolving power would render volume-averaging 
unnecessary. In terms of implementation for macro- 
scopic calculations, it is therefore believed that the 
continuum and volume-averaged approaches are 
equally suited. 

In describing real systems, it is seldom possibfe to 
incorporate all physical mechanisms into a mdthe- 
matical model of a process, and it is the modeler’s task 
to select those mechanisms which exert a dominant 
influence on system behavior. With respect to sol- 

idification of a binary mixture, the dominant physical 
mechanisms governing fluid flow in the mushy zone 
are different than those in the all-liquid region. 
This condition is evident in existing multidomain 
solidification models [9, lo], which use different 

momentum equations in the mushy and all-liquid 
regions. Single-domain phase-change models [ 1 I, I 5, 
191 have exploited the fact that the governing equa- 
tions used in the mushy and all-liquid zones arc 
derived, either explicitly or implicitly, from the same 
fundamental laws of physics, and by ignoring terms 
which are negligible only in botk regions, a single set 
of equations is found to apply in both regions. Criteria 
for neglecting/retaining terms can also be applied to 
the all-solid region, so that a single-domain (solid. 
mush, and liquid) model is obtained. 

Equations (16) and (17) are consistent with other 
mushy zone momentum equations found in the litera- 
ture f 15, 19,301. With u, = 0, equation (I 7) is identical 
to the momentum equation used by Voller and Pra- 

kash [ 151. Using volume-averaging procedures, Gane- 
san and Poirier [30] developed a general momentum 
equation in vector form, where the solid was con- 
sidered to be stationary. if the fourth term on the 
right-hand side of equation ( 13) is not neglected, but 
V, is set equal to zero, equation (16) can be rearranged 

and expressed as 

This result is essentially equivalent to the .x-corn- 
portent of equation (43) in ref. [30]. Equation (18) 
and the .~-component of equation (43) of ref. f30] 
differ only in that a higher-order expression for the 

solid-liquid drag term is used in ref. [30]. The higher- 
order model for the solid-liquid drag term is appro- 
priate in anisotropic media (columnar dendritic struc- 
tures) [30], and it may be incorporated into the con- 
tinuum model as data for its coefficients become 
available. The relationship between equation (I 8) and 
the momentum equation used by Beckermann and 
Viskanta [19] is discussed by Gancsan and Poirier 

[301. 

4. SUMMARY 

The derivation of the continuum momentum equa- 
tion has been reconsidered in an effort to clarify mis- 
conceptions which have arisen since the original devel- 
opment [I I]. Key assumptions have been highlighted, 
as have physical implications and limitations to apph- 
cation of the final result. The most important and 
distinguishing feature of both the continuum [l I, 15. 
161 and volume-averaging [19,30] models is the reten- 
tion of all terms which may be dominant in some 
region (solid, mush, or liquid) in the conservation 
equations. In this respect, the continuum and volume- 
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averaged solid~~~ation models are essentially equi- 
valent. 

Although equation (17) is limited to situations cor- 
responding to a single, continuous liquid phase and a 
single, continuous and non-deforming solid phase (a 
system of primary dendrites and eutectic lamalae 
would, for example, be considered as one solid phase), 
the modeling concept is not restricted as such. Equa- 
tion (7) is a more general relation which could 
be applied to more complicated systems involving, 
for example, solid precipitating at multiple bound- 
aries with different velocities, void inclusions, and 
solidi~cation around a matrix of fibers (composite 
materials). Generally, the continuum approach views 
a discontinuous solid structure (e.g. free floating crys- 
tals) as several difkrent phases. However, under con- 
ditions for which floating and settling of solid crystals 
(indeterminate in number) are significant, it becomes 
advantageous to view the crystals collectively as a 
single, deformable solid phase. Under such con- 
ditions, equation (17) cannot be applied, since it 
relies on a single, rigid solid phase. Nevertheless, a 
mixture momentum equation could be developed for 
situations involving a deforming solid phase by intro- 
ducing an appropriate (empirically determined) 
constitutive relation for the solid phase stress into 
equation (7). Such an approach would require an 
additional single-phase (solid or liquid) momentum 
equation for closure. An alternative is to consider 
separate phase momentum equations, thereby elim- 
inating the need for a mixture equation [29]. 

Although application of the continuum model to 
binary mixtures has been extremely successful in pre- 
dicting important solidification characteristics such 
as remelting, liquidus interface irregularities, double- 
diffusive convection in the melt, channeling, and 
macrosegregation [12-141, quantitative agreement 
between predicted and measured results has been less 
satisfactory [Id]. Barriers to obtaining good quan- 
titative agreement include uncertainties in requisite 
thermophysical property data and the permeability 
associated with the mushy zone. In general, the per- 
meability is a tensor, but with a paucity of per- 
meability data, detailed models are not available. 
Even in equiaxed regions of the mushy zone, where 
an isotropic model is appropriate, the permeability is 
not well known. Also, permeability data are most 
deficient in the important range corresponding to 
0.70 < g, < 1 .O, where relatively large permeabilities 
permit significant interdendritic fluid velocities. The 
permeability depends on several factors related to 
microscopic morphology, making it difficult to quan- 
tify. Moreover, microscopic morphological features, 
such as dendrite arm spacing, can change significantly 
during the solidification process 1411. 

An additional uncertainty relates to supplemental 
closure rules required to implement the continuum 
model. The momentum equation is coupled to the 
energy and species conservation equations through 
the buoyancy term, which is related to the temperature 

and liquid composition, and less directly through the 
affability, which is a strong function of the local 
liquid volume fraction. If local the~odynamic equi- 
librium (equal phase temperatures and chemical 
potentials) is assumed, temperature, liquid compo- 
sition, and liquid volume fraction can be related to the 
mixture enthalpy (dependent variable of the energy 
equation) and mixture composition (dependent vari- 
able of the species equation) through the equilib- 
rium phase diagram. Simple thermodynamic relations 
thereby provide means of relating temperature, en- 
thalpy, concentrations, and phase fractions, How- 
ever, binary metal systems which exhibit limited solid 
solubility typically exhibit non-equilibrium, since den- 
drites are not chemically saturated due to the 
extremely slow nature of solid state diffusion 1411. 
The equilibrium freezing assumption may therefore 
provide inaccurate predictions of local solute seg- 
regation between liquid and solid phases and of phase 
volume fractions. Nevertheless, the equilibrium freez- 
ing approximation is a logical starting point in mode- 
ling binary solidification, and its use in no way affects 
the validity of the conservation equations. It is, in 
fact, a simple matter to incorporate non-equilibrium 
relationships into the continuum model [16, 401, 
although such a treatment is not well suited for the 
remelting of dendrites. 
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MODELISATION DES SYSTEMES A SOLIDIFICATION DENDRITIQUE: REVISlON DE 
L’EQUATION DE QUANTITE DE MOUVEMENT DU CONTINUUM 

R&urn&-II y a eu ces dernikres an&es un regain d’inttrst dans la modblisation des ph&nom&nes de 
transport assoc& $ la solidi~cation dendritiques des mltlanges binaires. L,a solidi~cation se fait dans une 
r&ion biphasjque (boue) cara&ri&e par des gkomttries complexes interfaciales solide-~liquide, et le 
dPveloppement d‘un modcle qui conduit ii la solution dicte l&age d’hypothbes de continuum (thiorie de 
mClange) etiou des prockdures de moyenne en volume. Une analyse des articles r&cents suggere que les 
mod&les de solidification dtvelopp&s g partir des hypothtses de la thkorie de mClange sont moins valides 
et mains g&&raux que les modt?les similaires basts sur les moyennes en volume, particulihrement en 
considtration des kquations respectives de la quantitk de mouvement qui dicrivent l’&coulement fluide 
interdentrique. Dans cet article. ces diffkrentes approches sont montr&es conduire ri des kquations identiques 
de conservation macroscopique, et l’bquation de quantitk de mouvement du continuum est reconsidCrCe 
pour lever une confusion concernant la validit& du mod?le de continuum. On montre la coh&rence entre 

des tquations de quantiti: de mouvement prbsentkes rkcemment. 
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DIE MODELLIERUNG DENTRITISCH ERSTARRENDER SYSTEME: 
NEUFORMULIERUNG DER IMPULSERHALTUNGSGLEICHUNG IM 

KONTINUUM 

Zusammenfassung-In den letzten Jahren entstand ein erneutes Interesse an der Modellierung von Trans- 
portvorglngen, die mit der dentritischen Erstarrung in bin&en Gemischen zusammenhlngen. Die Erstar- 
rung tritt in einem Zweiphasengebiet mit Fest-Fliissig-Phasengrenzen von komplizierter Geometrie auf. 
Die Entwicklung eines geeigneten Modells erfordert die Annahme eines Kontinuums (Mischungstheor~e~ 
und/oder Verfahren der Voiumenmittelung. Eine Ubersicht iiber die einschlagige Literatur vermittelt den 
Eindruck. daB Erstarrungsn~odell~ auf der Grundhtge der Mischungstheorie weniger richtig und weniger 
umfassend seien als solche, die von einer Volumenmittelung ausgehen. Dies gilt insbesondere im Hinblick 
auf die Impulstraslsportgleichungen, welche die Fluidstromtmg zwischen den Dentriten beschreiben. In der 
voriiegenden Arbeit wird gezeigt, dal3 die unterschiedlichen Ansatze zu identischen makroskopischen 
Erhaltungsgleichungen fiihren. Die Impulstransportgleichung fiir das Kontinuum wird neu formuliert, urn 
die Diskussionen fiber die Giiltigkeit des Kontinuumsmodells auszuriumen. Die Ubereinstimmung mit 

einer jiingst publizierten Impulstrdnsportgleichung wird dargelegt. 

MOAEJIHPOBAHWE CMCTEM flEHfiPMTHOF0 3ATBEPAEBAHWR: MO~MWIKAHW5l 
YPABHEHMII KOJIWfECTBA fiB&DKEHMII B HPMl2HDKEHkiM Cl-IJIOIBHOH CPEAbi 

AmioTaunn-3 nOCneAH&ie rOAbl BO306HOBH,iCX lrHTepeC K MOAeJiEpOBafIEIO 9iBJleHiiii II+%iOCa,CBK3aH- 

NbIX C AeHAp~TH~M 3aT~pAeBaH~eM 6HaapHbIX CMeCeii. 3aTBepAeB~~e IipOKCXOAHT B AByX@a3HOii 

06namu, Koropaa xapaKTepu3y~x 3coxi~oii reohfeTpHeii rpamw pa3Aena TBepAoe T~JIO-R(HAK~CT~. 

Paspa6oTKa COOTBeT~Bymme~ MOAeJHi Tpe6yeT AOnymeH& 06 ~C~OAb3OBaH~~ ~O~O~eH~~ TeOpHEt 

CnJIOWIiOii CpeAbI(TeOpHri CMeCeii)Il/iiJlEf np&feHeHSiS MeTOAOB yC~AHeHEfR IEO 06,aeMy. 0630~ COBpe- 

MeHHOiiJIUTepaTypbI n03E0AReTnpeALInOA0)1CRTb,YTOMOAe,I~ 3aTBepAeBaHmI,~3pa6oTaHHbIeCyYeTOM 

AOnyIUeHHii TeOpASi CMeCeii, KBJIRIOTCR MeHee aAeKBaTHbIiWi, 'ieM IlpOCTbIe MOAeJlH, OCHOBaHHbIe Ha 

yCpeLW%Uis n0 o6aeMy,oco6emro B OTAOUIeHUYI COOTBeTCTByIOLI@iX ypaBHeH&ik KOnllYeCTBa ABmKemia, 

onncbmaromnxre~erilie Me~AeHApHTHOfi )I(BLIKOCTH. Ypaenemie KOneYeCTBaABmKeHm4 B npa6nuxemiti 

TeOpmi CMeCeii npeo6pa3yeTcn C UeJlbm yCTpaHeHHR IIpWiHH HeaAeKBaTHOCTH.&MOHCTpHpyeTCR COOT- 


